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Abstract 
1. The disease costs of sociality have largely been understood through the link be-

tween group size and transmission. However, infectious disease spread is driven 
primarily by the social organization of interactions in a group and not its size.

2. We used statistical models to review the social network organization of 47 species, 
including mammals, birds, reptiles, fish and insects by categorizing each species into 
one of three social systems, relatively solitary, gregarious and socially hierarchical. 
Additionally, using computational experiments of infection spread, we determined 
the disease costs of each social system.

3. We find that relatively solitary species have large variation in number of social part-
ners, that socially hierarchical species are the least clustered in their interactions, 
and that social networks of gregarious species tend to be the most fragmented. 
However, these structural differences are primarily driven by weak connections, 
which suggest that different social systems have evolved unique strategies to  
organize weak ties.

4. Our synthetic disease experiments reveal that social network organization can miti-
gate the disease costs of group living for socially hierarchical species when the 
pathogen is highly transmissible. In contrast, highly transmissible pathogens cause 
frequent and prolonged epidemic outbreaks in gregarious species.

5. We evaluate the implications of network organization across social systems despite 
methodological challenges, and our findings offer new perspective on the debate 
about the disease costs of group living. Additionally, our study demonstrates the 
potential of meta- analytic methods in social network analysis to test ecological and 
evolutionary hypotheses on cooperation, group living, communication and resil-
ience to extrinsic pressures.
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1  | INTRODUCTION

Host social behaviour plays an important role in the spread of infec-
tious diseases. Socially complex species from honeybees to African 
elephants live in large groups and are considered to have elevated 

costs of pathogen transmission due to high contact rates (Altizer 
et al., 2003; Loehle, 1995). Previous studies have tested hypotheses 
about the disease costs of sociality by associating group size with 
infection transmission (Patterson & Ruckstuhl, 2013; Rifkin, Nunn, 
& Garamszegi, 2012). Beyond a simple dependence on group size, 
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however, recent work in the field of network epidemiology has 
shown that infectious disease spread largely depends on the or-
ganization of infection- spreading interactions between individuals 
(Craft, 2015; Godfrey, Bull, James, & Murray, 2009; Van der Waal & 
Ezenwa, 2016; White, Forester, & Craft, 2015). Indeed, even when 
interactions between individuals are assumed to be homogeneous, 
the expectation of higher disease costs of group living has been 
mixed (Arnold & Anja, 1993; Patterson & Ruckstuhl, 2013; Rifkin 
et al., 2012).

Mathematically, social networks describe patterns of social con-
nections between a set of individuals by representing individuals as 
nodes and interactions as edges (Croft, James, & Krause, 2008; Farine 
& Whitehead, 2015; Krause, James, Franks, & Croft, 2014). The ad-
vantage of social network analysis is that it integrates heterogeneity in 
interaction patterns at individual, local and population scales to model 
global- level processes, including the spread of social information and 
infectious diseases (Krause, Croft, & James, 2007; Krause et al., 2014; 
Silk, Croft, Delahay, Hodgson, Boots, et al., 2017; Silk, Croft, Delahay, 
Hodgson, Weber, et al., 2017). In recent years, network analysis tools 
have allowed for rapid advances in our understanding of how individ-
ual interaction rates are related to the risk of acquiring infection (Leu, 
Kappeler, & Bull, 2010; Otterstatter & Thomson, 2007). A fundamen-
tal individual- level characteristic relevant to the spread of social or 
biological contagion in networks is the number of direct social part-
ners, associates or contacts, capturing the interaction necessary for 
transmission. While much attention has been focused on the implica-
tions of individual sociality, the disease implications of a species’ social  
system remains unclear.

By quantifying group- level metrics that describe global structures 
in interaction patterns, the network approach provides a unique op-
portunity to examine the disease costs of species social system. The 
role of higher order network structures such as degree heterogeneity 
(Figure 1a), subgroup cohesion (Figure 1d), network fragmentation 
(Figure 1e) and average clustering coefficient (Figure 1f) on infec-
tious disease spread is complex, but is relatively well understood (see 
network structure definitions in Table S1; Keeling, 2005; Meyers, 
Pourbohloul, Newman, Skowronski, & Brunham, 2005; Sah, Leu, Cross, 
Hudson, & Bansal, 2017). For example, as degree heterogeneity (or 
variation in the number of social partners) in a network increases, the 
epidemic threshold (i.e. the minimum pathogen transmissibility that 
can cause large outbreaks) decreases (Anderson, May, & Anderson, 
1992). However, the probability of epidemic outbreaks is lower in net-
works with high degree variance for moderately and highly transmissi-
ble pathogens (Meyers et al., 2005). Network metrics such as average 
clustering coefficient, subgroup cohesion and network fragmentation 
capture the tendency of individuals to form cliques and subgroups 
(Figure 1). Although the dynamics of infectious disease spread remain 
largely unaffected in networks with moderate levels of clustering, co-
hesion and fragmentation, extreme levels of these metrics in networks 
reduce epidemic size and prolong epidemic outbreaks (Keeling, 2005; 
Sah et al., 2017).

Recent mathematical models predict that the network structure of 
socially complex species can serve as a primary defence mechanism 

against infectious disease by lowering the risk of disease invasion 
and spread (Hock & Fefferman, 2012). It remains uncertain, however, 
whether the structure of social networks naturally observed in less- 
complex social systems mediates infectious disease risk and transmis-
sion. A systematic examination of the disease costs associated with 
species social system requires a comparative approach that isolates 
unique structural characteristics of social connections, while con-
trolling for population size, data collection methodology and type of 
interaction recorded. However, comparing networks across different 
taxonomic groups has proven to be a difficult task, with only a few 
cross- species network comparisons previously published in the litera-
ture (Faust, 2006; Faust & Skvoretz, 2002; Sah et al., 2017).

In this study, we conduct a quantitative comparative analysis 
across 47 species to investigate whether social network organiza-
tion alone, without the presence of physiological or behavioural 
immune responses, can reduce the disease costs of group living 
for various social systems. This is achieved in three steps. First, we 
categorize the continuum of species sociality into three distinct 
social systems (relatively solitary, gregarious and socially hierarchi-
cal); we then use phylogenetically controlled Bayesian GLMMs to 
identify social network structures which are predictive of the three 
social systems. Second, we perform computational experiments of 
infection spread to compare epidemiological outcomes (epidemic 
probability, epidemic duration and epidemic size) associated with 
the identified social network structures. In the final step, we inves-
tigate whether the differences in these network structures across 
the three social systems translates to differences in their disease 
outcomes.

We hypothesize that a social species can mitigate disease costs 
associated with group living through the organization of their social 
structure. However, we expect the presence of alternate disease 
defence mechanisms to also play an important role: social insects, 
for example, use social immunity as a primary strategy to minimize 
disease transmission; the structure of the social network in such 
species may not be effective in preventing future outbreaks or re-
ducing disease transmission. Our analysis, by broadening the scope 
of network analysis from species- specific analysis to a meta- analytic 
approach, offers new perspective on how social structure strategies 
mediate the disease costs of group living. A better understanding 
of the association between network structure and different social 
systems can facilitate investigations on other evolutionary and eco-
logical hypotheses on group living, social complexity, communica-
tion, population robustness and resilience to extrinsic population 
stressors.

2  | MATERIALS AND METHODS

2.1 | Dataset

We first conducted electronic searches in Google Scholar and pop-
ular data repositories, including Dryad Digital Repository and fig-
share for relevant network datasets associated with peer- reviewed 
publications. We used the following terms to perform our search: 
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“social network”, “social structure”, “contact network”, “interaction 
network”, “network behaviour”, “animal network”, “behaviour het-
erogeneity” and “social organization”. Only studies on non- human 
species were considered in our primary search. Network studies 
not reporting interactions (such as biological networks, food web 
networks) were excluded. By reviewing the quality (i.e. whether 
enough information was provided to accurately reconstruct net-
works) of published networks datasets, we selected 666 social 

networks spanning 47 animal species and 18 taxonomic orders. 
Edge connections in these networks represented several types of 
interactions between individuals, including dominance, grooming, 
physical contact, spatial proximity, direct food- sharing (i.e. trophal-
laxis), foraging, and interactions based on the asynchronous use of 
a shared resource. Figure 2 summarizes the species, the number of 
networks and the reported interaction types contributed by each 
taxonomic order represented in the study.

F IGURE  1 A stylized illustration of the global network measures used (in the final model) to identify structural differences in the social 
networks among different social systems. (a) Degree heterogeneity, measured as the coefficient of variation (CV) in the frequency distribution 
of the number of social partners (known as the degree distribution). Shown is the degree distribution of a homogeneous network (CV ≪ 1), 
and degree distribution of a network with large variation in individual degrees (CV = 1). (b) Degree homophily (ρ), or the tendency of social 
partners to have a similar degree. Shown is an example of a disassortative network, wherein high degree individuals tend to associate with 
low- degree individuals (ρ < 0), and an assortative degree network, where high- degree individuals tend to form social bonds with each other 
(ρ > 0). (c) Average betweenness centrality, that measures the tendency of nodes to occupy a central position within the social network. Shown 
is an example of a network with low average betweenness centrality and a network with high average betweenness centrality. Node colours 
represent the betweenness centrality values—nodes with darker colours occupy more central positions within the network. (d) Subgroup 
cohesion measures the tendency of individuals to interact with members of own subgroups (modules). The network to the left has three low 
cohesive subgroups, while the network to the right has highly cohesive subgroups where most of the interactions occur within (rather than 
between) subgroups. (e) Network fragmentation, measured as the log- number of the subgroups (modules) present within the largest connected 
component of a social network. Shown is an example of a weakly (left) and highly (right) fragmented network. (f) The average clustering 
coefficient measures the tendency for a set of three individuals to be interconnected, and indicates the propensity of an individual’s social 
partners to interact with each other. (g) Network diameter is the longest of all shortest paths between pairs of nodes in a network. Shown is an 
example of a network with low network diameter (longest shortest paths = 3) and a similar network with network diameter of 5, indicated by red 
coloured edges [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e)

(f) (g)
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2.2 | Classifying species’ social system

Developing a definition of social structure that encompasses the 
continuum of social systems across diverse taxonomic groups is 
challenging. Consequently, we followed Slater and Halliday (1994) 
and Kappeler and Schaik (2002) to classify species into three broad 
categories of social structure based on the degree of association be-
tween adults during activities such as foraging, travelling, sleeping/
resting and rearing offspring. Relatively solitary species were defined 
by infrequent aggregation or association between adults outside of 
the breeding period, and lack of synchronized movements in space by 
adults. Examples of relatively solitary species in the database include 
the desert tortoise (Gopherus agassizii), wild raccoons (Procyon lotor) 
and the Australian sleepy lizard (Tiliqua rugosa). Recent studies sug-
gest that the social structure of a species traditionally considered as 
solitary can be complex (Prange, Gehrt, Hauver, & Voigt, 2011; Sah 
et al., 2016). We therefore categorized the three species as relatively 

solitary and not solitary. Species that aggregate for one or more ac-
tivities, but have unstable or temporally varying group composition, 
were classified as gregarious. Examples of gregarious species in our 
database include bottlenose dolphins (Tursiops truncatus), bison (Bison 
bison), Indiana bats (Myotis sodalis), female Asian elephants (Elephas 
maximus), sociable weavers (Philetairus socius), golden- crowned spar-
rows (Zonotrichia atricapilla) and guppies (Poecilia reticulata). Species 
characterized by a permanent or long- term (i.e. at least over a single 
breeding season) stable social hierarchy were classified as socially hi-
erarchical. Examples of socially hierarchical species include carpenter 
ants (Camponotus fellah), yellow baboons (Papio cynocephalus), male 
elephant seals (Mirounga angustirostris) and spotted hyenas (Crocuta 
crocuta). We note that animal social behaviour is being increasingly 
recognized to span a continuum from solitary to eusocial (Aureli et al., 
2008; Aviles & Harwood, 2012; Silk, Cheney, & Seyfarth, 2013), with 
most species showing some level of fission–fusion dynamics (Silk, 
Croft, Tregenza, & Bearhop, 2014). The division of social systems into 

F IGURE  2 Phylogenetic distribution of animal species represented in the social network dataset used in this study. Numbers next to 
the inner ring denote the total networks available for the particular species. The inner and the middle ring is colour coded according to the 
taxonomic class and the social system of the species. The colours in the outer ring indicate the type of interaction represented in the network, 
and whether the interactions were coded as (direct) interactions or association in our analyses. The tree was constructed in the Interactive 
Tree Of Life (http://itol.embl.de/wileyonlinelibrary.com) from the NCBI taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/
wileyonlinelibrary.com) [Colour figure can be viewed at wileyonlinelibrary.com]
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three discrete, albeit arbitrary, categories allows for simple distinc-
tions in the organization of network structure and disease risks among 
species that are characterized by different complexity in group living 
behaviour.

2.3 | Identifying unique network structures of 
species’ social system

To examine the structure of social networks associated with our 
three classified social systems, we used a Bayesian GLMM approach 
using the MCMCglmm package in r (Hadfield, 2010), with the species’ 
social system as the response (categorical response with three lev-
els—relatively solitary, gregarious and socially hierarchical). The fol-
lowing network measures were included as predictors in the model 
(see Table S1 and Figure 1 for illustrations): degree heterogeneity, 
degree homophily, average clustering coefficient, weighted cluster-
ing coefficient, transitivity, average betweenness centrality, weighted 
betweenness centrality, average subgroup size, network fragmenta-
tion, subgroup cohesion, relative modularity and network diameter. 
Network fragmentation (i.e. the number of subgroups within the larg-
est connected component of the social network) and Newman modu-
larity was estimated using the Louvain method (Blondel, Guillaume, 
Lambiotte, & Lefebvre, 2008). Relative modularity was then calculated 
by normalizing Newman modularity with the maximum modularity 
that can be realized in the given social network (Sah, Singh, Clauset, & 
Bansal, 2014; Sah et al., 2017). The rest of the network metrics were 
computed using the Networkx package in Python (https://networkx.
github.io/). We controlled for network size and density by includ-
ing the number of nodes and edges as predictors, and mean edge 
weight was included to control for data sampling design. To control 
for phylogenetic relationships between species, a correlation matrix 
derived from a phylogeny was included as a random factor. The phy-
logenetic relationship between species was estimated based on NCBI 
taxonomy using phyloT (http://phylot.biobyte.de). We controlled for 
repeated measurements within groups, animal species, the type of 
interaction recorded and edge weighting criteria by including group, 
taxa, interaction type (association vs. interaction) and edge weight type 
(weighted vs. unweighted) as random effects in the analysis. As the 
spatial scale of data collection can influence network structure (Table 
S3), we specified sampling scale (social sampling vs. spatial sampling) 
as random effect in all our analyses. Studies that collected data on 
specific social groups were categorized as social sampling, and those 
that sampled all animals within a fixed spatial boundary were labelled 
as spatial sampling.

All continuous fixed effects were centred (by subtracting their av-
erages) and scaled to unit variances (by dividing by their SD) to assign 
each continuous predictor with the same prior importance in the analy-
sis (Schielzeth, 2010). Since network measures can be highly correlated 
with each other, variance inflation factor (VIF) was estimated for each 
covariate in the fitted model, and covariates with VIF greater than 5 
were removed to avoid multicollinearity. We used a weakly informa-
tive Gelman prior for fixed effects and parameter- expanded priors for 
the random effects to improve mixing and decrease the autocorrelation 

among iterations (Gelman, 2006). Specifically, a χ2 distribution with 1 
degree of freedom was used as suggested by Hadfield (2014). We ran 
three MCMC chains for 15 million iterations, with a thinning interval 
of 1,000 after burn- in of 50,000. Convergence of chains was assessed 
using the Gelman–Rubin diagnostic statistic (Gelman & Rubin, 1992) in 
the coda package (Plummer, Best, Cowles, & Vines, 2006).

Groups of certain species in our database were represented with 
multiple networks, each summarizing a set of interactions occurring 
in a discrete time period. To ensure that such animal groups were 
not over- represented in the original analysis, we performed a cross- 
validation of our analysis by random sub- sampling. Specifically, we 
repeated the analysis 100 times with a random subset of the data 
composed of (randomly selected) single networks of each unique ani-
mal group in our database. An average of coefficient estimates across 
the multiple subsamples was then calculated and compared to the  
coefficients estimated using the full dataset.

2.4 | Evaluating the role of weak ties in driving 
structural differences in species’ social system

The analysis described in the previous section assumes equal im-
portance of all edges recorded in a social network. To examine the 
role of weak ties in driving the structural differences between the 
three social systems, we removed edges with weights lower than 
a specified threshold. Four edge weight thresholds were examined 
in detail: 5%, 10%, 15% and 20%. For example, to construct a 10% 
threshold network from an original network with maximum edge 
weight ω, we removed all edges with weights below 0.1 ×  ω. Next, 
the phylogenetically controlled Bayesian mixed model analysis 
described in the previous section was repeated to determine the 
structural difference between the thresholded networks of the 
three social systems. We ran four separate models, each with one 
of the four thresholds.

2.5 | Disease implications of network structure and 
species’ social system

We considered disease costs of the three social systems with syn-
thetic experiments based on a computational disease model, and 
 followed up with statistical analysis of the results.

2.6 | Disease simulations

We performed Monte Carlo simulations of a discrete- time 
susceptible- infected- recovered (SIR) model of infection spread 
through each network in our database. For disease simulations, we 
ignored the weights assigned to social interactions between individu-
als because the impact of interaction weight (whether they repre-
sent contact duration, frequency or intensity) on infection spread 
is generally not well understood epidemiologically. Transmissibility 
of the simulated pathogen was defined as the probability of infec-
tion transmission from an infected to susceptible host during the in-
fectious period of the host. Assuming infection transmission to be 
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a Poisson process and a constant recovery probability (Grenfell & 
Dobson, 1995; Kiss, Miller, & Simon, 2017), the pathogen transmis-
sibility can be calculated as T= β

β+γ
, where β and γ are the infection 

and recovery probability, respectively (Bansal, Grenfell, & Meyers, 
2007). The stochastic epidemiological simulations used in this study 
are based on a discrete- time, chain binomial, SIR model (Bailey, 
1957). Each disease simulation was initiated by infecting a randomly 
chosen individual in the social network. At subsequent time steps 
every infected individual in the network could either transmit in-
fection to a susceptible neighbour with probability parameter β or 
recover with probability γ. The disease simulations were terminated 
when there were no remaining infected individuals in the network. 
We performed disease simulations with a wide range of transmissibil-
ity values (0.05–0.45, with increments of 0.05), by varying infection 
probability (β) and assuming a constant recovery probability (γ = 0.2 
or average infectious period of 5 days). In the paper, we focus our 
discussion on three specific values of pathogen transmissibility 
(T = 0.05, 0.15, and 0.45) because they correspond to low, moderate 
and highly contagious infectious diseases with average basic repro-
duction numbers (R0) of 1.6, 4.6 and 14.0 respectively (Heffernan, 
Smith, & Wahl, 2005). The detailed results of disease simulations 
over a wider range of pathogen transmissibility (0.05–0.45) are  
included in the Supporting information.

To investigate the effects of recovery probability on the behaviour 
of pathogen spread, we repeated disease simulations with a similar 
range of transmissibility values as stated earlier (0.05–0.45), but with a 
longer infectious period (10 days or γ = 0.1). For each combination of 
pathogen transmissibility and social network, 500 simulations of dis-
ease spread were carried out and summarized using three measures: 
(1) epidemic probability, the likelihood of an infectious disease inva-
sion turning into a large epidemic (outbreaks that infect at least 15% of 
the population), (2) epidemic duration, the time to epidemic extinction, 
and (3) epidemic size, the average percentage of individuals infected 
in an epidemic outbreak.

2.7 | Evaluating disease outcomes of network 
structure and species’ social system

Three separate linear Gaussian models, one corresponding to 
each outbreak measure (epidemic probability, epidemic duration 
and epidemic size), were fit to establish disease costs of network 
measures associated with species’ social system using the r pack-
age MCMCglmm (Hadfield, 2010). To evaluate the role of network 
structure on the probability of large outbreaks, pathogen transmis-
sibility and network measures included in the final model of the pre-
vious analysis were included as predictors (Table 1). We repeated 
the analysis with the species’ social system as predictor to directly 
estimate the vulnerability of different social structure towards dis-
ease transmission.

In all models, the effective number of nodes (i.e. the number of in-
dividuals with degree greater than zero), network density and the size 
of the largest connected component of the network were also included 
as controlling predictors. As before, we controlled for the presence of 

phylogenetic correlations, group identification, animal species, edge 
weight type and sampling scale of networks. As infectious disease 
spread over different interaction types represents different transmis-
sion routes, we also controlled for pathogen transmission mode by 
including the interaction type as a random effect. Minimally informa-
tive priors were used for fixed effects (normal prior) and (co)variance 
components (inverse Wishart; Hadfield, 2010). We ran three MCMC 
chains for 100 thousand iterations, with a thinning interval of 10 after 
burn- in of 2,000, and assessed convergence using the Gelman–Rubin 
diagnostic statistic (Gelman & Rubin, 1992) in the coda package. To 
make post hoc comparisons within the models, we performed pairwise 
comparisons between the three social systems with a Tukey adjust-
ment of p values, using the lsmeans r package (Lenth, 2016).

3  | RESULTS

3.1 | Unique network structures associated with 
species’ social system

The final model (after removing collinear predictors) consisted of 
seven global network measures—degree heterogeneity, degree homo-
phily, average betweenness centrality, average clustering coefficient, 
subgroup cohesion, network fragmentation and network diameter 
(Figure 1, Table 1). Of the five random effects included in the model 
(phylogeny, group identification, interaction type, edge type, sampling 
scale), phylogeny explained a large portion of the variance (Table S2), 
indicating that there is a substantial phylogenetic correlation within 
the social systems. Of the three social systems (relatively solitary, 
gregarious and socially hierarchical), the social networks of relatively 
solitary species demonstrated the largest variation in the number of 
social partners, or degree heterogeneity (Table 1). In contrast, socially 
hierarchical species had the least variation in number of social part-
ners, and experienced a local social environment that is not as well 
interconnected; this is evident by the low average clustering coeffi-
cient of their social networks as compared with other social systems 
(average clustering coefficient, Table 1). In terms of network fragmen-
tation (which was calculated on the largest connected component of 
networks), the social networks of gregarious species were the most 
subdivided into socially cohesive groups. No statistically significant 
differences were observed between the social systems with respect 
to other network metrics. Table S3 reports the average coefficient es-
timates of all seven global network metrics from the cross- validation 
analysis; all estimates were within the 95% credible interval of the ef-
fect sizes reported in the full model (Table 1). We also find that the or-
ganization of social networks depends on the sampling scale of social 
associations, but not on the type of interactions recorded (including 
when the interaction types are grouped into two categories of direct 
interactions vs. associations, and when the recorded interactions are 
categorized into ten distinct types mentioned in Figure 2). For exam-
ple, networks measured at a population scale rather than for social 
groups tended to have low local connectivity, as measured by the av-
erage clustering coefficient, and low average betweenness centrality 
(Table S4).
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3.2 | Disease costs of network structure and species’ 
social system

Our previous analysis revealed that only a few features of social 
networks are significant in distinguishing the three social systems. 
Next we ask: Do these key topological differences mediate differ-
ential disease costs of each social system? To answer this question, 
we first examined how degree heterogeneity, clustering coefficient 
and network fragmentation influence epidemic risk and transmis-
sion of low, moderate and highly transmissible pathogens (Figure 3; 
see Figures S2 and S4 for results on an extended range of pathogen 
transmissibility values and Figure S5 for results on disease simula-
tions with extended infectious period). High variation in individual 
sociality (i.e. high degree heterogeneity) in social networks was pre-
dictive of small and short epidemic outbreaks for low transmissible 
pathogens. Moderately spreading pathogens in network with high 
degree heterogeneity led to less frequent, shorter epidemics that 
infected a smaller proportion of the population (degree heteroge-
neity, Figure 3). The presence of cliques in social networks was as-
sociated with prolonged but small outbreaks of low transmissible 
pathogens, and higher epidemic risk of moderately transmissible 
infections (average clustering coefficient, Figure 3). Subdivisions 
of networks into socially cohesive groups (high fragmentation) was 

associated with reduced risk of lowly transmissible infections be-
coming large epidemics; outbreaks that did reach epidemic propor-
tion were shorter and infected a lower proportion of the population. 
Conversely, highly contagious pathogens caused frequent, large and 
prolonged epidemic outbreaks in networks with high network frag-
mentation (network fragmentation, Figure 3).

Consequently, socially hierarchical species experienced elevated 
risk of epidemic outbreaks of moderately transmissible pathogen 
due to homogeneous individual connectivity (low degree heteroge-
neity) and high global connectivity (low network fragmentation) na-
ture of their social networks (epidemic probability, Figure 4, Figures 
S3 and S5). The highly fragmented networks of gregarious species 
were more vulnerable to frequent, large, and prolonged epidemic 
outbreaks of highly transmissible pathogens as compared with other 
social systems. Given that the degree heterogeneity and network 
fragmentation is associated with shorter outbreaks of low trans-
missible pathogens (Figure 3, Figures S3 and S6), epidemic duration 
of less transmissible pathogens was lowest in gregarious species, 
followed by relatively solitary species (epidemic duration, Figure 4, 
Figures S3 and S6). For moderately contagious pathogens, highly 
fragmented networks of gregarious species experienced longer ep-
idemic outbreaks as compared with relatively solitary and socially 
hierarchical species.

Network  
metric Base

Focal

Relatively 
solitary Gregarious Socially hierarchical

Degree 
heterogeneity

Relatively solitary −3.96 [−7.57, −0.33] −9.46 [−15.21, −3.87]

Gregarious −6.39 [−11.67, −1.34]

Socially hierarchical

Degree 
homophily

Relatively solitary −0.18 [ −1.66, 1.17] −1.69 [−3.80, 0.25]

Gregarious −1.64 [−3.25, 0.09]

Socially hierarchical

Average 
betweenness 
centrality

Relatively solitary 0.68 [−2.31, 3.76] 0.36 [−2.91, 3.82]

Gregarious   0.27[ −2.56, 2.12]

Socially hierarchical

Average 
clustering 
coefficient

Relatively solitary −0.06 [−2.49, 2.47] −3.40 [−6.56, −0.24]

Gregarious −3.30 [−5.82, −0.88]

Socially hierarchical

Subgroup 
cohesion

Relatively solitary 0.60 [−2.98, 1.84] −0.40 [−3.23, 2.42]

Gregarious 0.97 [−1.14, 3.05]

Socially hierarchical

Network 
fragmentation

Relatively solitary 3.94 [0.74, 7.26] 0.11 [−4.01, 4.12]

Gregarious −3.27 [ −6.11, −0.51]

Socially hierarchical

Network 
diameter

Relatively solitary −1.79 [−5.00, 1.45] 1.46 [−2.79, 5.52]

Gregarious 2.86 [−0.31, 5.89]

Socially hierarchical

TABLE  1 Effect size estimates of the 
Bayesian generalized linear mixed models 
examining the characteristics of social 
network structure among the three social 
systems: relatively solitary, gregarious and 
socially hierarchical. Shown are the posterior 
means of the expected change in log- odds of 
being in the focal social system (column 
headers), compared to the base social system 
(row headers), with one- unit increase in the 
network measure. The 95% credible intervals 
(i.e. the coefficients have a posterior 
probability of 0.95 to lie within these 
intervals) are included in brackets. Significant 
terms with pMCMC <0.05 are indicated in 
bold, where pMCMC is the proportion of 
MCMC samples that cross zero.  
[Correction added after online publication 
on 20 March 2018: Table 1 has been 
updated as several entries had missing 
minus signs and one entry was incorrectly 
bolded]
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3.3 | Role of weak ties in distinguishing species’ 
social system, and disease implications

When the weakest 5% edges were removed from all weighted net-
works, the structural differences between the three social systems 
were observed mainly in two network metrics—degree heterogene-
ity and network fragmentation. Similar to the empirical networks 
(Table 1), the 5% thresholded social networks of relatively solitary 
species demonstrated the highest variation in number of social part-
ners; and 5% thresholded networks of gregarious species were more 
fragmented compared with relatively solitary and socially hierarchi-
cal species (Table S5). When the weakest 10% and 15% edges were 
removed, the global network measures across all social systems were 
similar to each other, except for one important difference. Both 10% 
and 15% thresholded networks of social species (gregarious and 
socially hierarchical) demonstrated a statistically significant higher 
average betweenness centrality, or higher global connectivity than 
relatively solitary species (Tables S6–S8).

Disease simulations through 20% edge weight thresholded social 
networks revealed no differences in epidemiological outcomes be-
tween the three social systems for all except low pathogen transmissi-
bility (Figure S7). For slow spreading pathogens, networks of relatively 
solitary species experienced prolonged epidemic outbreaks as com-
pared with social species.

4  | DISCUSSION

It is becoming increasingly clear that the impact of an infectious disease 
on a population depends on the organization of infection- spreading 
interactions between individuals rather than group size (Craft, 2015; 
Godfrey et al., 2009; Sah et al., 2017; White et al., 2015). Since organi-
zation of social network structure concurrently impacts the transmis-
sion of information and infectious diseases, it has critical implications 
for understanding the evolutionary trade- offs between social behav-
iour and disease dynamics. The disease implications of social network 
structure can differ depending on the evolutionary trajectory of social 
systems. For instance, social complexity can emerge as a result of se-
lective pressures of past infectious diseases, and therefore may have 
the ability to lower the risk of transmission of future infectious disease 
(Hock & Fefferman, 2012). Conversely, the patterns of social interac-
tions may not provide protection from disease transmission in species 
that use alternate defence mechanisms (physiological or behavioural) to 
combat disease spread once it is introduced in the population (Cremer, 
Armitage, & Schmid- Hempel, 2007; Meunier, 2015; Stroeymeyt, 
Casillas- Pérez, & Cremer, 2014). In this study, we assessed whether 
network structure alone (in the absence of physiological or behavioural 
disease defence mechanisms) can reduce the risk of infectious disease 
transmission in different social systems, using comparative methods on 
an extensive database of animal social networks.

Our analysis compares global structural features associated with 
social networks of species classified into three social systems: rela-
tively solitary, gregarious and socially hierarchical. The evidence that 
we present here suggests that, at the least, relatively solitary, gregar-
ious and higher social organizations can be distinguished from each 
other based on (1) degree of variation among social partners (i.e. de-
gree heterogeneity), (2) local connectivity, as indicated by the pres-
ence of cliques within the social networks (i.e. average clustering 
coefficient), and (3) the extent to which the social network is divided 
into cohesive social groups (i.e. network fragmentation). Specifically, 
we find that social networks of relatively solitary species tend to 
demonstrate the highest degree heterogeneity, that social networks 
of gregarious species tend to be the most fragmented, and that so-
cially hierarchical species are least clustered in their interactions. The 
structural differences between the social systems were detected after 
controlling for systematic biases in the data collection (that might gen-
erate non- biological differences between the social structures). This 
suggests that the underlying differences in social network structures 
associated with each social system are biologically significant.

Social species are typically assumed to have a skewed degree dis-
tribution (e.g. bottlenose dolphins, Lusseau et al., 2003, wire- tailed 

F IGURE  3 Role of network structures in influencing disease 
transmission summarized as epidemic probability (likelihood of large 
outbreaks infecting at least 15% of individuals in the network), 
average epidemic duration (time to epidemic extinction), and average 
epidemic size (per cent of individuals infected in the social network), 
for low (= 0.05), moderate (= 0.15) and highly (= 0.45) transmissible 
pathogens. The average infectious period of the simulated disease 
is 5 days (γ = 0.2). The three global network measures shown are 
the ones that were found to differ among the three social systems 
(Table 1). DH, degree heterogeneity; CC, average clustering 
coefficient; NF, network fragmentation. Error bars represent 95% 
credible intervals. Credible intervals that do not include zero suggest 
significant association with disease transmission (red = significant 
effect, black = effect not significant) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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manakins, Ryder, McDonald, Blake, Parker, and Loiselle, 2008), which 
implies that a small proportion of individuals have a large number of 
social partners. Our results, however, show that degree heterogeneity 
in relatively solitary species can be much higher than social species. 
Large variation in the number of social connections in relatively sol-
itary species may simply arise due to a high variation in spatial be-
haviour as compared with social species (Pinter- Wollman, 2015; Sah 
et al., 2016). A homogeneous degree distribution in socially hierarchi-
cal species, such as ants and savanna baboons, could allow for effi-
cient and equitable information transfer to all individuals (Blonder & 
Dornhaus, 2011; Cantor & Whitehead, 2013). Low average clustering 
coefficient, as observed in socially hierarchical species, indicates that 
an individual’s local social network is not tightly interconnected (i.e. 
individual’s contacts do not form a tight clique), and is known to in-
crease network resilience and stability in response to perturbations 
such as the removal or death of individuals (Flack, Girvan, de Waal, & 
Krakauer, 2006; Krause et al., 2014).

Our results also show that social networks of gregarious species are 
the most subdivided (but not disconnected) into cohesive social sub-
groups. The presence of many but small, socially cohesive subgroups 
within social networks of gregarious species can be explained based 
on the behavioural tendency to switch affiliative partners; as a result, 
individuals form consistent social bonds with only a small subset of 
individuals (Rubenstein, Sundaresan, Fischhoff, Tantipathananandh, & 
Berger- Wolf, 2015). Many gregarious species also form groups based on 
sex or age class, kinship and functional roles (Kanngiesser, Sueur, Riedl, 
Grossmann, & Call, 2011) or due to high spatial or temporal variability 
in resources (Couzin, 2006; Couzin & Laidre, 2009; Sueur et al., 2011). 
Previous theoretical models have shown that modular subdivisions pro-
mote behavioural diversity and cooperation (Gianetto & Heydari, 2015; 
Whitehead & Lusseau, 2012). Gregarious species may therefore limit 
the size of their social subgroups to maximize benefits of cooperation, 
making their social networks subdivided (Marcoux & Lusseau, 2013).

Our results show that the observed structural differences be-
tween the three social systems are primarily driven by the presence of 

weak ties in their social networks. The reason why filtering out weak 
weighted edges removes most structural differences between social 
systems lies in their organization of weak ties. Individuals of social spe-
cies disproportionately allocate effort among their social connections 
in order to maintain overall group connectivity (Figure S1) and are also 
known to have high social fluidity (Colman et al., 2017). Removing 
weak ties from networks of social species therefore increases varia-
tion in individual connectivity (degree heterogeneity), with a relatively 
minor decrease in their global connectivity (average betweenness 
centrality). Consequently, the global connectivity of social species in 
10%–15% thresholded networks is significantly higher than relatively 
solitary species.

Previous studies have typically focused on group size as the key 
parameter impacting disease transmission and group living costs. 
However, the expectation of higher disease costs of group living has 
yielded mixed results (Arnold & Anja, 1993; Patterson & Ruckstuhl, 
2013; Rifkin et al., 2012), which can be explained in part by the pres-
ence of group- level behavioural (Meunier, 2015; Schaller, Murray, 
Bangerter, & Schaller, 2015) and physiological defence (Habig, Archie, 
& Habig, 2015) against infection spread, as well as the presence of 
chronic social stress (Kappeler, Cremer, & Nunn, 2015; Nunn et al., 
2015). While group size might be an easy parameter to measure, it 
does not capture the complex spatio- temporal dynamics of most 
animal societies. By performing disease simulations over empirical 
networks with different interaction types, we consider a range of in-
fectious diseases with different transmission routes, including those 
that are spread by direct contact, and those that are spread by asyn-
chronous contact between individuals in a population. Our analysis 
shows that the organization of social patterns may not provide gen-
eral protection against pathogens of a range of transmission potential. 
We note that our results on epidemic size and duration are specific 
to pathogens that follow SIR infection dynamics. The outcome of ep-
idemic probability, however, is expected to be similar across different 
models of infectious disease spread (such as infections that provide 
temporary immunity or chronic infections).

F IGURE  4 Disease costs of social systems due to social network structure. Disease cost has been quantied in terms of epidemic probability, 
average epidemic duration and average epidemic size for low (= 0.05), moderate (= 0.15) and highly (= 0.45) transmissible pathogens. The 
average infectious period of the simulated disease is 5 days (γ = 0.2). Error bars represent SEs, and different letters above the bars denote a 
significant difference between the means (p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]
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We find that socially hierarchical species experience longer out-
breaks of low transmissibility infections and frequent epidemics of 
moderately contagious infections because of low variation in indi-
vidual and local connectivity (i.e. degree heterogeneity and aver-
age clustering coefficient) as compared with other social systems. 
Networks with low degree heterogeneity are known to experience 
steady protracted outbreaks, in contrast to explosive rapid outbreaks 
fuelled by super- spreaders in high- degree heterogeneity networks 
(Bansal et al., 2007; Kiss, Green, & Kao, 2006; Meyers et al., 2005). 
High average clustering coefficient is also believed to create redun-
dant paths between individuals making it harder for slow spreading 
infections to encounter new susceptible individuals and percolate 
throughout the network, prolonging infection spread (Newman, 
2003).

In our disease simulations, highly fragmented social networks of 
gregarious species experienced frequent epidemics of highly conta-
gious infections, and longer epidemics of moderately to highly trans-
missible pathogens. Our recent work has shown that infection spread 
in highly fragmented networks gets localized within socially cohesive 
subgroups (structural trapping), which enhances local transmission but 
causes structural delay of global infection spread (Sah et al., 2017). In 
addition, our results suggest that highly transmissible pathogens are 
able to avoid stochastic extinction in fragmented networks by reach-
ing “bridge” nodes, but experience delay in transmission due to the 
presence of structural bottlenecks.

As this study involved comparisons of social networks across 
a broad range of taxonomic groups and data sampling methods, we 
made a number of assumptions that could shape the results. First, be-
cause the impact of edge weights on disease transmission can be con-
text dependent, depending on the type of interaction, transmission 
mode of pathogen, and the relative time- scale of network collection 
and pathogen spread, we have chosen to not include edge weights 
while performing our computational disease experiments. Future 
meta- analytic studies can leverage a growing number of transmission 
studies to explicitly incorporate the role of contact intensity on disease 
transmission (Aiello et al., 2016; Manlove, Cassirer, Plowright, Cross, & 
Hudson, 2017). Second, we assume that social contacts do not covary 
with pathogen characteristics and remain unaltered after an infection 
is introduced into a population. Infection has in fact been shown to 
alter the social connectivity of hosts (Croft et al., 2011; Lopes, Block, & 
König, 2016) and recent theoretical work has demonstrated that neg-
ative correlations between transmissibility and contact rate can dimin-
ish the impact of connectivity (White, Forester, & Craft, 2017). Future 
species- specific studies can take advantage of host- specific experi-
mental manipulations, where possible, to gain in- depth insight towards 
host behaviour—infection feedback (Ezenwa, Ghai, McKay, & Williams, 
2016; Silk, Croft, Delahay, Hodgson, Boots, et al., 2017). Finally, in our 
network database there were some systematic differences in data col-
lection methodologies across social systems. Specifically, all data for 
relative solitary species were collected by sampling individuals over 
a specified spatial range, because the definition of social groups for 
these species can be vague. As observations of direct interactions in 
relatively solitary species are rare, all networks of relatively solitary 

species in our database were based on direct or indirect spatial asso-
ciations. Although the meta- analysis described in this study controlled 
for such biases in data collection, the results should be interpreted as 
a conceptual understanding about the differences between the social 
systems in terms of empirical networks that have been published in 
the literature, and not as a general prediction about the differences in 
social systems.

Overall, our results suggest that the organization of social net-
works in gregarious species is more efficient in preventing outbreaks 
of moderately contagious pathogens than socially hierarchical spe-
cies. Conversely, networks of socially hierarchical species experience 
fewer outbreaks of fast spreading infectious diseases as compared to 
gregarious species. The question of why this is so warrants detailed 
future investigations of the eco- evolutionary trajectory of social con-
nectivity in the two social systems. It is likely that the organization 
of social networks in socially hierarchical species may have evolved 
to prevent outbreaks of highly transmissible pathogens, while relying 
on alternate group- level disease defence mechanisms (including san-
itary behaviours, allogrooming and the use of antimicrobials) to pre-
vent outbreaks of low to moderate transmissibility infections. Since 
the social networks included in the meta- analysis were selected re-
gardless of the presence of infectious diseases in the populations, 
the organization of network structure could also reflect the selec-
tion pressure of past infections, the presence of other ecological/
evolutionary drivers (Pinter- Wollman et al., 2013) or conflicting se-
lection pressures posed by the effort to maximize transmission of 
information.

5  | CHALLENGES AND OPPORTUNITIES

The sociality of animal species has been traditionally classified 
based on qualitative phenotypes and life- history traits, and the clas-
sification typically differs between taxonomic groups. While this 
categorization scheme is convenient, it does not capture the con-
tinuum of social behaviour. As a step forward, recent studies have 
proposed quantitative indices of sociality (Aviles & Harwood, 2012; 
Silk, Altmann, & Alberts, 2006). The results of our study support the 
potential use of network structure as a means of quantifying social 
complexity across taxonomic boundaries. Similar predictive meta- 
analyses can also be used to identify species that are outliers in the 
current sociality classification system based on the organization of 
their social structure.

However, we need to overcome several challenges before robust 
comparative analysis can be performed on social networks across 
broad taxonomic groups to address such issues. First, comparing net-
work structure across taxonomic groups where data are aggregated 
over different spatio- temporal scales is challenging. Aggregating in-
teractions over small time- periods may omit important transient in-
teractions, whereas aggregating data over long time- periods may lead 
to a saturated network where distinguishing social organization may 
be difficult. Spatial constraints and environmental heterogeneity can 
also impose a considerable influence on the social network structure 
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(Davis, Abbasi, Shah, Telfer, & Begon, 2015; Leu, Farine, Wey, Sih, & 
Bull, 2016). Additionally, the consideration of relative time- scale of 
animal interaction and infectious period of pathogen is critical in mak-
ing accurate predictions of disease spread. Future comparative studies 
should therefore consider standardizing data over temporal and spatial 
scales.

The second challenge lies in effectively controlling for inherent 
biases in data collection methodologies across taxonomic groups. 
As direct observation of interactions is difficult in relatively solitary 
species, social networks are usually constructed based on direct or 
indirect spatial associations (rather than interactions) between individ-
uals in a population (rather than a local group). Network size correlates 
with sampling intensity in many cases, and is therefore a poor proxy to 
group size. Social network studies of relatively solitary species are also 
relatively sparse compared with social species.

The third challenge for comparative studies of animal social net-
works is utilizing data sources published in inconsistent formats. To 
facilitate in- depth meta- analyses of network data, we encourage re-
searchers to accompany animal network datasets with the following 
details: data sampling method, location of the data collection, type of 
population monitored (captive, semi- captive, free- ranging), edge defi-
nition, edge weighting criteria, node attributes (such as demography), 
temporal resolution of data, temporal and spatial aggregation of the 
data, proportion of animals sampled in the area, and population den-
sity. When exact measurements of these data attributes are difficult, 
using reasonable approximations or proxies would be more useful than 
no information.

6  | CONCLUSIONS

In summary, our study broadens the scope of network analysis 
from being just species- specific to a meta- analytic approach, and 
provides new insights towards how the organization of interaction 
patterns can mediate disease costs of sociality. We note that there 
is enormous potential of adopting a comparative approach to study 
the commonalities and differences in social networks across a wide 
range of taxonomic groups and social systems. Future studies can use 
this approach to quantitatively test several evolutionary and ecologi-
cal hypotheses, including ones on the trade- offs of group living, the 
contributions of social complexity to intelligence, the propagation of 
social information and social resilience to population stressors.
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