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Abstract

The factors that drive spatial heterogeneity and di↵usion of pandemic influenza remain debated.

Here, we characterize the spatio-temporal mortality patterns of the 1918 influenza pandemic in British

India and study the role of demographic factors, environmental variables, and mobility processes on the

observed patterns of spread. We analyze fever and all-cause excess mortality across 206 districts in

India during the period of January 1916 to December 1920, and control for variation in seasonality

particular to India. Our analysis reveals that the 1918 autumn wave in India matches signature features

of influenza pandemics with high disease burden among young adults, (moderate) spatial heterogeneity

in burden, and highly synchronized outbreaks across the country deviating from annual seasonality.

Importantly, we also find that population density and rainfall explain the spatial variation in excess

mortality, and that long-distance travel via railroad is predictive of the observed spatial di↵usion of

disease. Our work integrates a spatio-temporal analysis of mortality patterns during the 1918 influenza

pandemic in India with data on underlying factors and processes to reveal transmission mechanisms in

a large, intensely connected setting with significant climatic variability. The characterization of such

heterogeneity during historical pandemics is crucial to our ability to prepare for future pandemics.

Keywords: Influenza, pandemic, spatial heterogeneity, di↵usion, transportation, mobility,

environment, tropics

The 1918 influenza pandemic has left an indelible mark on human history. Significant increases in

respiratory and fever mortality were first observed in the United States in March 1918. By autumn, the

H1N1 influenza had spread to the rest of the globe, facilitated in that newly globalized era by steamship

travel and the intense movement of World War I troops [1, 2]. While pandemic mortality estimates

remain disputed, recent analysis places the global toll at 50 million deaths [3].

The 1918 pandemic has been well-described in the US and Europe [4–7] and recent studies have

characterized other parts of the Americas [8–11]. This work of the last two decades has established

“signature” features of influenza pandemics: a shift in the virus subtype, an age shift in mortality to

young adults, successive pandemic waves, high transmissibility and spatial heterogeneity in burden [12].

However, our understanding of historical pandemics in Asia remains limited and focuses primarily on

the estimation of mortality impact [13–19], with few exceptions [20]. Characterizing the environmental,ORIG
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socio-demographic, and evolutionary factors underlying epidemics is crucial to our ability to develop

public health countermeasures and implement e↵ective mitigation plans, and requires diverse case studies

across climatic and socio-economic strata. Here, we contribute a case study of the 1918 pandemic in

India, a nation which was made up of a largely rural but intensely connected population spread out over

diverse climatic regions.

Of the 50 million deaths, British India was thought to have endured 8 million deaths at the time [21],

a number which has recently been estimated to be closer to 14 million deaths [17, 22]. This means that

1 in every 23 Indians died during 1918-1919 and that 1 in every 3.5 global pandemic deaths was an

Indian, both of which are underestimates as they only include the areas of India under British rule. It is

understood that influenza first hit the province of Bombay in September 1918, and proceeded to spread

north and east in a wave-like pattern that slowed and attenuated in severity as it traveled further from

its origin [20, 22, 23].

The study of socio-demographic factors underlying influenza pandemics has received attention in past

work, with the most focus on age-specific mortality risk. Numerous past studies have found that young

adults experienced a disproportionately high mortality risk during the 1918 pandemic, while older adults

had a relative decreased risk[4, 8, 9, 12, 22, 24–26]. Studies of other demographic features, however, have

been few but include the work of Chowell et al. on the role of urbanization in predicting mortality burden,

with both high population density and very low population density being associated with high death

rates [5].

Past work on the impact of environmental factors on historical pandemics includes work on prediction

of pandemic emergence based on El Nino cycles [27] and the association between disease and tem-

perature [28] or latitude as a proxy for climate[11]. Additionally, recent studies on seasonal outbreaks

highlight the importance of environmental processes by inferring a U-shaped e↵ect of absolute humidity

on seasonal influenza prevalence, mediated by temperature [29, 30]. That is, both low humidity/low

temperature environments (as found in temperate regions of the world in winter months) and high hu-

midity/high temperature environments (as found in tropical regions of the world) are hypothesized to

increase influenza risk. Additionally, rainfall has been found to be associated with influenza epidemics

in the tropics (e.g. [31–34]). Some hypotheses supporting this pattern include increased indoor crowding

facilitating airborne and droplet transmission, and decreased vitamin D intake depressing innate im-

mune responses [35]. These mechanisms may support a contemporaneous or asynchronous association

between precipitation and influenza burden [29].

In addition to factors that drive individual-level transmission, population-level processes such as mo-

bility are also crucial to the spatial dynamics of disease. The movement of human hosts provides the
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sca↵olding over which pathogens traverse great spatial distances, and has been implicated from the dif-

fusion of plague in pre-industrial Europe along silk trade routes [36] to the spread of Ebola via regional

connectivity [37] and Zika via air travel [38]. In rare explanatory studies about spatial di↵usion during

the 1918 pandemic, Palmer et al. examined the impact of boat and rail tra�c on the spread of influenza

in Newfoundland through qualitative methods [39] and Eggo et al. tested whether assorted mobility

models predict pandemic dynamics in the UK and US [7]. Valleron et al even implicate surface travel in

the spread of the 1889 influenza pandemic through Europe, though are unable to test this hypothesis

due to unavailable data [40]. In India, the railway network began carrying unprecedented numbers of

people further, faster, and more frequently leading up to the twentieth century (with annual passenger

numbers growing from 0.5 million in 1854 to 176 million by 1900 [41]). Simultaneously, infectious disease

outbreaks of cholera, plague, malaria and smallpox were ravaging the country, and Indian rail travel

entered the global debate linking human travel to public health. During the year 1918, over 459 million

passengers traveled the Indian railway, and the Sanitary Commissioner of India believed that this played

an important role in pandemic influenza spread [20, 42].

Here, we characterize the spatial dynamics of excess mortality during the 1918 influenza pandemic

in British India with respect to spatial age-structure, heterogeneity and synchrony. Using key covariate

data, we also analyze the underlying environmental factors and social processes that may have con-

tributed to the observed spatial variation and di↵usion. In our study of the 1918 influenza pandemic in

India, we aim to (a) tease apart the impact of population density, seasonality, rainfall and temperature

on the observed east-west gradient; (b) di↵erentiate the seasonal dynamics and environmental drivers

of inter-pandemic and pandemic influenza; (c) understand the role of host mobility on the propaga-

tion of pandemic influenza. We suggest that the characterization of such heterogeneity during historical

pandemics is crucial to our ability to prepare against future pandemics.

Methods

Defining Pandemic Mortality

Mortality data were obtained from sanitary reports published annually for 206 districts in the provinces

or presidencies of Assam, Bengal, Bihar & Orissa, Bombay, Central Province & Berar, Madras, Northwest

Frontier Province, Punjab, and the United Provinces [43, 44]. Monthly fever deaths were compiled for

all years between 1916 and 1920 at the district-level and covered areas of India under British rule

representing approximately 70% of the total population of 318 million in India [45]. Additionally, we

compiled fever, respiratory and (age-specific and total) all-cause mortality at the province-level for 1916-

1920 [43]. The primary source indicated that pandemic deaths were preferentially coded as fever rather
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than respiratory causes. (In the Appendix, we compare these cause-specific and all-cause mortality data,

Web Figure 1.) Consequently, we estimated monthly excess fever mortality (above a seasonal baseline)

to identify the number of deaths attributed to influenza using a seasonal regression model, controlled

for di↵erences in regional seasonality. To provide a finer temporal resolution, we also re-sampled and

interpolated the monthly excess fever mortality to produced weekly excess fever mortality time series. We

used district-specific, weekly excess fever mortality for most of our analysis, with two exceptions: for our

analysis on age-specific mortality patterns, we use total all-cause mortality as age-specific fever mortality

data was not available; for our analysis on environmental drivers of disease burden, we use district-level,

monthly excess fever mortality as environmental variables were only available at the monthly level. More

details on our data and these procedures can be found in Web Appendix 1.

Defining Covariates

Population size data were collected from the 1911 (decennial) Census of India [46] for each district in

our dataset. Monthly rainfall and monthly minimum temperature data were compiled for 25 districts

across all 9 provinces for 1916-1920 from the Sanitary Commissioner’s Annual Report [43].

Travel data were collected on the number of passengers traveling annually on 59 local railway lines

in India [42]. Based on these data, we constructed a railway travel network, where nodes were districts

and an edge existed between two districts if there was one or more railway lines connecting them. Only

railway line origins and final destinations were available. Travel was assumed to be bidirectional on each

railway line, and each edge was weighted with the number of annual passengers traveling on the line, if

available. After eliminating nodes with no disease data, the railway network consists of 52 nodes and 41

edges (with edge weight data available on 16 edges).

We also constructed a local travel network where nodes were districts and an edge existed between

two districts if they shared a physical border. This network represents unobserved travel via roads or

waterways. After eliminating nodes with missing disease data, the local travel network consists of 197

nodes and 382 edges.

Measuring Spatial Heterogeneity & Synchrony

We examined spatial heterogeneity of excess fever mortality with the Lorenz curve, which compares

the cumulative distribution of excess deaths to the cumulative population size among districts (ranked

smallest to largest) [47]. The farther the Lorenz curve is from our expectation (the main diagonal), the

greater the spatial heterogeneity in death rates. We further quantify this through the Gini coe�cient,

which is close to 1 when there is high spatial heterogeneity in death rates; and close to zero when death

rates are directly proportional to population size.

4

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article-abstract/doi/10.1093/aje/kw

y209/5106629 by Yale U
niversity user on 09 N

ovem
ber 2018



To estimate the seasonality of pandemic and non-pandemic seasons, we detected the timing of epidemic

peaks in each district by performing a continuous wavelet transformation on the time-series of excess

fever mortality [48, 49]. Details on these methods can be found in Web Appendix 1.

Examining Environmental Drivers of Disease Burden

Among the 25 districts for which rainfall and temperature data were collected, we used two time series

generalized linear mixed models to examine the association between excess death rates and environ-

mental factors for months before and during the pandemic period (January 1916 through July 1918

and August 1918 through March 1919, respectively). Excess death rates were transformed as log of the

excess death rates plus one; environmental data were centered and standardized; district was included

as a group (random) e↵ect. For the two periods, we compared models where the rainfall predictor had

0 through 2 month lags to examine synchronous and asynchronous relationships between disease and

rainfall.

Explaining Spatial Di↵usion of Disease

To test hypotheses about spatial di↵usion, we considered associations between observed travel net-

works and the observed infection data using a likelihood-based approach called INoDS [50]. We apply

this method on alternative travel networks assuming infection timing for each district coincides with

pandemic onset. We defined a pandemic onset date for each district by using weekly excess death data

and specifying onset as the first week when the excess death rate was greater than 1 per 1000 population.

Using this pandemic onset date for each district and three network hypotheses (the local travel network

and the railway travel network, unadjusted or weighted by passenger fluxes; each described above), we

used a likelihood approach to estimate the predictive power of each empirical network to explain the

observed patterns of pandemic spatial spread [50]. We infer transmission parameters for network spread

and non-network spread, and measure predictive power by comparing each empirical network to a set

of null networks. Further details on this methodology can be found in Web Appendix 1.

Results

We use historical reports to estimate excess mortality for the autumn wave of the 1918 influenza

pandemic in British India. We aim to (a) characterize the spatio-temporal patterns and age structure

of excess mortality; (b) explain the spatial variation in excess mortality patterns with demographic and

environmental factors; and (c) understand the role of short- and long-distance travel on spatial di↵usion

during the outbreak.
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Spatial Dynamics & Age Structure

We focus on analyzing the spatial and temporal dynamics of the autumn wave of the 1918 pandemic

measured through fever deaths in 206 districts of India. The autumn wave of the pandemic in India

started during the first week of September 1918 with shipping tra�c into the Bombay port seeding

infection [20, 23], and lasted through March 1919. While this wave was concentrated, our data shows

significant heterogeneity in the temporal dynamics of the disease (Figure 1A). All districts had pandemic

onset by November 1918, and cases lasted in each district from 2 to 13 weeks. The northern and central

parts of the country (particularly parts of the Central Province & Berar and the Northwest Frontier)

experienced the highest mortality burden, while the southern and eastern districts had less pronounced

mortality waves (Figure 1B). The spatial di↵usion of the pandemic resembled a wave-like pattern starting

from the western coast and spreading eastward (Figure 3A), as has been demonstrated previously [20].

In Figure 2A, we compare all-cause mortality across age groups during the autumn wave of the

pandemic compared to the influenza-relative excess mortality during 1917 (Figure 2A). Mortality rates

are higher for all age groups compared to a recent seasonal outbreak. In particular, the pandemic

impacted the young with death rates in individuals aged 20-30 years being 4-5 fold seasonal mortality

rates in the western, central and northern provinces ; the pattern is weak but still detectable in the

eastern provinces (including Madras, Bengal, Assam, and Bihar & Orissa) where burden was low. (See

also Web Figure 2A in the Web Appendix for relative comparison). Additionally, we highlight that India

largely did not experience the elderly sparing observed in other settings (Web Figure 2B).

Spatial Heterogeneity & Synchrony

Our spatially-resolved dataset gives us an opportunity to further consider heterogeneity in the patterns

of the 1918 influenza pandemic. In particular, we consider the spatial distribution and the temporal

dynamics of the outbreak. In Figure 2B, we illustrate the Lorenz curve which highlights that larger

populations are disproportionately responsible for disease burden. The Gini coe�cient for the district-

level data is moderate (0.27).

In Figure 2C, we consider the seasonality of influenza during the pandemic and during non-pandemic

seasons using a wavelet analysis. We find that non-pandemic influenza-relative excess mortality is char-

acterized by two di↵erent seasonality profiles (with peaks occurring during the summer or winter) for

di↵erent geographic locations. On the other hand, the 1918 pandemic was highly synchronous across

the country regardless of geography and non-pandemic seasonality.

6

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article-abstract/doi/10.1093/aje/kw

y209/5106629 by Yale U
niversity user on 09 N

ovem
ber 2018



Environmental Drivers of Spatial Variation in Disease Burden

We examined associations between environmental drivers and peak influenza activity. First, we validate

existing hypotheses about inter-pandemic seasons that suggest that high rainfall is associated with high

excess mortality burden in tropical regions and low temperature (correlated with low humidity) is

associated with excess mortality disease burden in temperate regions [51]. Next, we explore possible

environmental associations with pandemic influenza [27, 52, 53]. Because the mechanisms behind these

hypotheses lead to a synchronous or asynchronous association with rainfall, we examined six models

that had one of 0 to 2 month lags for the rainfall predictor (but no lag for the minimum temperature

predictor) for the pandemic and non-pandemic period.

We found that during the non-pandemic period, rainfall was positively predictive of spatial variation in

excess mortality burden at all lags, while minimum temperature was largely insignificant or demonstrated

a small (negative) e↵ect size (Table 1). In contrast, influenza burden during the pandemic period is

negatively predicted by rainfall at no lag or a lag of 1 month (Table 2). The 2 month lag model provided

the best fit for the non-pandemic period, while the no lag model provided the best fit for the pandemic;

however, all models had comparable AICs. We note that all models su↵ered from heteroscedascity,

despite log transformation of the response data.

Human Mobility & Spatial Di↵usion of Disease

Our analysis of the spatio-temporal patterns of the 1918 pandemic in India suggests two hypotheses

about the spatial di↵usion of influenza during this outbreak: (a) The wave-like pattern observed in Figure

1A, Figure 3A, as well as [20], support spread via local (e.g. road, waterway) travel. (b) The spatial

heterogeneity and spatial synchrony we observe in Figure 2C instead support spread via long-distance

(e.g. railway) travel.

We tested these hypotheses through the INoDS method [50] by testing the ability of each travel

network (local (Figure 3B), rail (Figure 3C), and weighted rail (Web Figure 3) networks) to predict

the observed spatial progression of disease through the country (Figure 3A). We find that all three

networks are significant in explaining the observed disease patterns when compared against the null

(See significance in Table 3), conditional on the network transmission parameter, �, and non-network

transmission parameter, ✏. In Web Appendix 2, we test the sensitivity of these results to our assumptions

and find that they are robust (Web Table 1).

Discussion

We have presented an analysis of the spatio-temporal spread of the autumn wave of the 1918 influenza

pandemic between districts of British India. Our findings demonstrate that the spread of the 1918 H1N1
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influenza virus was rapid and synchronous across the country, but resulted in varying disease burden

across regions along an east-west gradient. We show that the spatial variation in infection burden is

explained by environmental drivers, and that spatial di↵usion of disease is predicted by long-distance

mobility patterns.

The historical mortality data presented here are subject to limitations, notably in the coding for cause

of death. While our use of fever deaths is validated by the primary source, fever deaths also include

other seasonal infectious disease causes such as malaria. The seasonality of malaria has been identified

as May-September during that era, so this would be a confounding factor for those provinces in our

study that have been found to have monsoon influenza seasonality. Of these, a few are known to be

hyper-endemic areas (e.g. parts of Central Province & Berar, Bihar & Orissa, Assam) [54]. However,

given our focus on the autumn wave of the 1918 pandemic and because historical records report low

malaria burden during 1918, we expect this to have limited impact on our findings [21].

Influenza seasonality remains poorly characterized, particularly in low-income countries and in the

tropics [29, 55–57]. The distinct seasonality that we observed in India during non-pandemic excess mor-

tality activity in 1916-1920 coincides with the climate zones of India based on the Köppen classification

[58], with the northeastern region classified as “humid semitropical” and distinct from surrounding re-

gions. Our seasonality findings are also largely consistent with recent studies of contemporary influenza

seasonality in India [59–61] and other countries with mixed climates [56]. However, we note that our

methods are unable to disentangle excess mortality caused by influenza from other pathogens with

similar symptoms (e.g. malaria), and this may a↵ect our understanding of non-pandemic seasonality.

We observe the signature “W” pattern of 1918 age-specific mortality among the provinces of India, with

the highest mortality rates among infants, followed by older adults and adults. This pattern is similar to

what has been found in other countries outside Europe and North America during the 1918 pandemic,

including Colombia [10], Mexico [8], and Brazil [62]. (Comparison of age-specific mortality data from

other countries is available in Web Figure 2 in the Appendix.) High-income countries have reported

relatively low mortality rates among the elderly, but this was not observed in Indian populations, thus

suggesting that they may not have been exposed to the 1830s global pandemic virus or its descendants

[4, 26]. We also observe similarity in the age-specific mortality curves among provinces with the same

seasonal influenza patterns (following the east-west gradient), where western districts with temperate-

region seasonal influenza patterns tended to have greater mortality. We note that our findings may be

limited due to our use of all-cause mortality data.

While we could not examine absolute and relative humidity [30], we considered the role of rainfall in

predicting mortality burden during the pandemic compared with non-pandemic years. India experiences
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complex seasonal influenza dynamics due to its size and climatic diversity. During non-pandemic periods,

we found distinct seasonal patterns according to regional climatic profiles, and rainfall was positively

associated with the magnitude of excess mortality, thus providing evidence for the increased crowding

or decreased micronutrient hypothesis [35]. On the other hand, the 1918 pandemic in India had highly

synchronous dynamics that supplanted distinct seasonality in di↵erent regions of the country. We thus

hypothesize that socio-demographic and immunological factors may have dominated environmental ones

to synchronize the timing of the autumn pandemic wave, as has been observed for the recent 2009

H1N1 pandemic (e.g. [63]). The magnitude of the autumn pandemic wave, however, was still modulated

by environmental factors, with pandemic disease burden being inversely proportional to rainfall. We

speculate that this surprising result can be explained by the link between environment and nutrition.

The year 1918 brought one of the most severe droughts of the twentieth century to India, except in the

northeastern region which received excess rain during the monsoon season (June-August) [64, 65]. These

dry conditions, while beneficial for depressing other infectious diseases such as malaria and plague, led

to food and milk shortages, thus increasing susceptibility to infection [21, 66, 67]. Our findings support

this hypothesis in the models with an asynchronous association between rainfall and influenza burden.

Our results also show a synchronous inverse relationship between precipitation and disease (in the lag-0

pandemic models) suggesting a correlation between rainfall and absolute humidity but would require

additional data to test.

Beyond environmental factors, we also sought to identify demographic and social processes that could

explain the observed spatial dynamics. First, by constructing a Lorenz curve, we identified spatial

heterogeneity in the burden of the pandemic in British India and found that this burden was nonlinearly

associated with population size. Our finding of a Gini coe�cient of 0.27 is comparable to those found

in rural areas of England & Wales for the 1918 pandemic [5]. Second, we focus on the impact of host

movement dynamics on the spatial spread of disease. Past studies have identified two classes of spatial

dynamics for influenza: (a) local and radially di↵usive wave of spread as observed in [63]; and (b)

hierarchical spread starting at populous centers (connected by long-distance travel) with subsequent

spread to smaller areas [7, 68, 69]. Disentangling the hypotheses of wave-like versus hierarchical spread

is key to our understanding of transmission mechanisms and to targeting control measures. Our spatio-

temporal descriptive analysis and past work of the Indian pandemic suggest preliminary support for

both hypotheses, thus we use a data-driven statistical approach to test them. Our findings provide

significant evidence for long-distance travel (via the rail network) and for short-distance travel (via a

local travel network), thus supporting the hierarchical spread hypothesis. Other modes of transportation

(such as shipping tra�c, WWI troop movements) may have also contributed to host mobility and
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infection seeding (particularly in the port cities of Madras and Calcutta). However, our findings provide

a parsimonious explanation for the observed spread without these alternative modes.

While the intense connectivity provided by rail travel may have been a key player in the propagation

of the pandemic, the railways were also a focus of public health monitoring and biosecurity in India.

Motivated by devastating plague outbreaks, the railways were part of an extensive and coordinated

entry and exit screening medical surveillance system starting in 1897 [41]. Additionally, railway carriages

were disinfected intensely. Modern outbreaks of SARS and the 2009 H1N1 influenza have brought into

focus the limited impact of travel restrictions and travel surveillance given the fact that the reductions

necessary to significantly a↵ect spatial spread are not feasible in practice [70, 71]. Our findings about

the role of travel in the pandemic spread (particularly the support of the railway network weighted by

passengers) either confirm that travel surveillance was also not very e↵ective in 1918, or suggest that

the pandemic burden would have been worse in the absence of these public health e↵orts.

We limit our current study to the autumn wave of 1918 as it was the largest wave in India. Recent work

has highlighted the importance of the “herald waves” that have been documented in North America and

Europe ahead of the autumn wave [72]. Our data show limited evidence of high influenza mortality during

April-May 1918, particularly in the districts of the United Provinces (UP) of India (Figure 1). While

this epidemic may have been a herald wave, perhaps explaining UP’s relatively mild autumn pandemic

wave, UP’s year-round excess mortality activity makes it di�cult to distinguish from a seasonal influenza

outbreak.

Our study contributes to our understanding of spatial variation and di↵usion during the 1918 influenza

pandemic. India of 1918 represents a unique case study with a highly rural population in a climatically

diverse setting, intra-connected via railways and inter-connected with the rest of the globe through

shipping tra�c. The lack of elderly sparing and a largely missing herald wave place the 1918 pandemic

in India with other rural and isolated populations; while the early, large, and fast autumn wave make

it similar to the pandemic dynamics of large, connected locations. Our findings provide a parsimonious

explanation of the spatial dynamics of the pandemic in India via environmental and social processes.

In particular, our work highlights the role of rainfall in emerging infectious disease dynamics. As our

society moves into an increasingly water-stressed future, we advocate that pandemic planning should

better integrate an understanding of environmental extremes and how they feed into social, agricultural

and economic processes a↵ecting disease transmission.
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Figures:

Figure 1: Spatio-temporal Dynamics. (A): Excess fever mortality per 1000 population from April 1918 to

April 1919. District time series are illustrated with thin lines and are colored by province. Thicker lines show the

province mean excess fever mortality. (B): Total excess fever deaths (per 1000 population) during the autumn

wave of the 1918 pandemic in India. District borders are colored for locations where mortality data is available

according to colors shown in legend.

Figure 2: Spatial Age-Structure, Heterogeneity & Synchrony.(A): Age-specific all-cause deaths during

the 1918 pandemic autumn wave, by province. For comparison, we consider the age-specific all-cause deaths

during the 1917 seasonal influenza epidemic for all of India. Young children: <5y, school children: 5-20y, young

adults: 20-30y, adults: 30-50y, older adults: 50+y. (B): The Lorenz curve illustrates the distribution of the total

number of excess deaths for the 1918-1919 pandemic wave, as a function of cumulative (ascending) population size

at the district level. The blue circles show the empirical data which demonstrate moderate heterogeneity (with

a Gini coe�cient of 0.27) and the gray dashed line shows the null which represents no heterogeneity in death

rates. (C): A wavelet analysis illustrates the synchrony of peak time of influenza activity during pandemic

(1918-1919) and non-pandemic (1916-1917 and 1917-1918) periods. Each violin plot shows the occurrence of

excess mortality peaks across districts within a given province between June of the first year and May of the

subsequent year.

Figure 3: Explaining Spatial Di↵usion. (A): A map showing the onset of the 1918 pandemic autumn

wave in districts of India. The earliest onset is the week of September 1918 in the province of Bombay on

the western coast. Pandemic influenza then spread eastward and northward. Using these onset times, we test

whether di↵erent travel networks are explanatory of the observed spatial di↵usion. (B): The local travel network

between districts (nodes) of British India. Network edges represent shared district borders. (C): The railroad

travel network between districts (nodes) of British India. Network edges represent one or more railway lines

which originated in one district and terminated in another district. In (B) and (C), we have mortality data for

all (blue) nodes shown, and nodes highlighted in red experienced a 1918 autumn wave of high excess mortality.
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Tables

Table 1: Regression results for non-pandemic excess mortality activity.

Model & Predictor[a] AIC[b] Estimate[c] SE[d]
p-value

Rainfall lag = 0 368

intercept 0.26 0.060 1.6E-5

t (month) 0.0037 0.0012 0.0029

rainfall[e] 1.07 0.50 0.034

min. temperature �0.019 0.011 0.085

Rainfall lag = 1 340

intercept 0.30 0.061 1.6E-6

t (month) 0.0035 0.0013 0.0057

rainfall[e] 2.78 0.52 1.04E-7

min. temperature[e] �0.022 0.011 0.039

Rainfall lag = 2 334

intercept 0.30 0.063 2.0E-6

t (month) 0.0037 0.0013 0.0061

rainfall[e] 3.44 0.54 2.9E-10

min. temperature �0.019 0.011 0.079

[a]Models are shown with 0-2 month lags for the rainfall predictor.
[b]Akaike Information Criterion
[c]Estimates for the district group e↵ects are excluded from this table.
[d]Standard error.
[e]Significant predictor.
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Table 2: Regression results for non-pandemic excess mortality activity.

Model (with rainfall lag)[a] AIC[b] Estimate[c] SE[d]
p-value

Rainfall lag = 0 610

intercept 1.66 0.34 2.3E-6

t (month) �0.26 0.027 <2E-16

rainfall[e] �16.67 3.35 1.5E-6

min. temperature �0.044 0.054 0.42

Rainfall lag = 1 632

intercept 1.93 0.35 1.4E-7

t (month) �0.23 0.029 2.0E-13

rainfall[e] �6.57 3.24 0.044

min. temperature �0.057 0.057 0.32

Rainfall lag = 2 636

intercept 2.12 0.36 1.1E-8

t (month) �0.19 0.029 8.7E-10

rainfall 2.90 3.15 0.36

min. temperature �0.072 0.058 0.21

[a]Models are shown with 0-2 month lags for the rainfall predictor.
[b]Akaike Information Criterion
[c]Estimates for the district group e↵ects are excluded from this table.
[d]Standard error.
[e]Significant predictor.
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Table 3: Explaining spatial di↵usion through travel networks.

Travel network �
[a]

✏
[b] Significance[c]

Local 0.106 0.078 0.0

Railroad (unweighted) 0.08 0.04 0.0

Railroad (weighted) 0.45 0.03 0.002

[a]� captures the transmission rate.
[b]✏ captures the error rate.
[c]The significance represents the p-value comparing the empirical travel network to null networks
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