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Ecologists regularly use animal contact networks to describe interactions

underlying pathogen transmission, gene flow, and information transfer.

However, empirical descriptions of contact often overlook some features of

individual movement, and decisions about what kind of network to use in a

particular setting are commonly ad hoc. Here, we relate individual movement

trajectories to contact networks through a tripartite network model of individ-

ual, space, and time nodes. Most networks used in animal contact studies

(e.g. individual association networks, home range overlap networks, and

spatial networks) are simplifications of this tripartite model. The tripartite

structure can incorporate a broad suite of alternative ecological metrics like

home range sizes and patch occupancy patterns into inferences about contact

network metrics such as modularity and degree distribution. We demonstrate

the model’s utility with two simulation studies using alternative forms of

ecological data to constrain the tripartite network’s structure and inform

expectations about the harder-to-measure metrics related to contact.
1. Background
Animal contact networks are critical for describing the interactions that underlie

pathogen transmission, gene flow, and information transfer, but empirical

descriptions of contact are difficult to generate and sometimes biased [1–4].

Ecological metrics like patch occupancy and home range size require

less-intensive sampling, while still retaining information about contact patterns.

Incorporating these alternative information sources could improve inferences

about wildlife contact network structures.

Contact patterns reflect animal behaviour. Individual space-use patterns

determine which animals have opportunities to interact with one another. In gre-

garious species, aggregation size preferences determine how many individuals

contact one another within a group. Behaviours such as territoriality or kin-

based associations also contribute to the probability that individuals will interact

given the opportunity.

Contacts themselves are often not directly observable. Estimated network

metrics like modularity (the extent to which the network substructures into sep-

arate communities) and degree distribution (the number of connections each

individual has) are often derived from incomplete information on a subset of

animals. Small sample sizes and limited replication restrict the circumstances

and spatio-temporal contexts to which these estimates apply [1,2].
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Figure 1. From movement processes to contact patterns. Overarching ecological processes in (a) drive a set of (realized) individual movement trajectories (b). These
can in turn be summarized through a set of ecological features in c, which are fully determined by the movement trajectories describing individual identity (I), location
in space (S), and position in time (T). Some ecological features can then be measured (with noise) to produce various ecological datasets (d ). Other ecological metrics,
in particular, those describing contact networks, are derived from observed ecological data (e). These derived network metrics are then used as a basis for simulation
studies of transmission ( f ). A key question is how well these forecasted transmission dynamics match those realized in the system (g).
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Since contact patterns are a product of spatial and behav-

ioural preferences, behaviour and space-use data might help

overcome some limitations to network inference, while also

strengthening insight about ecological context. This could

be particularly useful for projects whose eventual objective

is to model disease transmission, gene flow, or other transfer

processes that emerge from an underlying network structure.

Yet despite the potential benefits of integrating other forms of

information into inferences about network structure, clear

strategies for directly incorporating these data are limited.

Here, we propose a mathematical framework that links con-

tact networks with other types of ecological data. Our approach

is based on a tripartite network model that explicitly describes

individual identity, location, and time. First, we introduce

animal movement trajectories and formalize their relation-

ship to contacts. Then, we describe the tripartite model, and

illustrate how different types of contact networks are all simpli-

fications of the tripartite structure. Next, we demonstrate the

model’s utility by showing how some animal social systems

generate consistent and measurable dependencies between

the tripartite network’s elements. Finally, we implement two
simulations that illustrate how behavioural and space-use

data could be integrated into simulated networks underlying

studies of transmission.
2. From ecological processes to emergent
patterns of contact

An animal’s movement trajectory starts with its birth, ends with

its death, and describes its positions in space and time between

the two. Numerous internal and external processes influence

the particular paths individuals take (figure 1a). Describing

these individual movement tracks and the processes that

shape them is the realm of movement ecology (figure 1b).

Ecological features like individual survival times,

population densities, home range sizes, and connectivity

patterns summarize certain aspects of movement trajectories

(figure 1c). If movement trajectories were completely known,

these features could be derived without uncertainty: they are

deterministic functions of animal movements. Wildlife and

behavioural ecologists often draw inferences from direct
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Figure 2. Network constructions project the full tripartite structure. (a) The full tripartite network shows how six individuals (I ) occupy six spatial patches (S) over
five time steps (T ). Stack heights represent how often each patch was occupied, and colours indicate the occupying individuals. Curves pass through the time step of
each occupation. Individuals occupy one patch at a time, but can visit the same patch multiple times. Multiple individuals can occupy the same patch simul-
taneously. (b) The individual-space bipartite network connects individuals to spatial patches they occupy. (c) The individual-aggregation bipartite network
connects individuals to aggregations ( points in space – time) in which they occur. (d – g) are unipartite projections of the bipartite networks in (b) and (c).
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observation of these summary measurements (figure 1d ); and

ecological statisticians work to describe the uncertainty

surrounding them.

Observed data regularly used to build networks, such as

radiotelemetry tracks, mark-recapture schemes, proximity

loggers, or video recordings, are subject to sampling variability

(figure 1d ). This variation propagates downward through

all subsequent analysis: calculated network metrics (1e) and

models for predicting transmission (1f ) rely on a network

inferred from noisy data. As a consequence, the relationship

between estimated metrics and the system’s true contact (1c)

and transmission dynamics (1g) is uncertain. Here, our goal

is to reduce that uncertainty by considering how information

from other ecological data sources might be harnessed to

refine empirical descriptions of contact.
3. A tripartite network of identity, location,
and time

Movement trajectories can be written as three-part records

describing individual identity, location in space, and position
in time (directly analogous to the Lagrangian perspective

in movement ecology; [5]). This three-part description

naturally lends itself to a tripartite (three-part) network of

Individual, Space, and Time nodes (with both Space and

Time treated as discrete). A similar three-part structure,

known as a folksonomy or tripartite tagging network, is

used in the computer science literature to describe how

users tag items and reviews online [6–9]. In our cases,

edges link individuals to locations, with each edge bearing a

tag that indicates when each individual-site pairing occurred

(figure 2a).

Consider an individual, I [ f1, . . . , Ng in a population

of size N, moving across a spatial domain DS, Rd, over

time DT , R. Individual locations in space and time can

be written as a set of triads f(I, S, T)g, where I identifies

the individual, S identifies the location in space, and T ident-

ifies the position in time. The set of all triads forms a surface

completely describing the realized spatio-temporal distri-

bution of individuals, and consequently the tripartite (I, S, T)

network also provides a complete representation of the spatio-

temporally explicit contact process at the specified spatial

and temporal resolution.

http://rspb.royalsocietypublishing.org/


Ta
bl

e
1.

Co
m

m
on

un
ip

ar
tit

e
ne

tw
or

k
co

ns
tru

cti
on

m
et

ho
ds

in
te

rm
s

of
(I,

S,
T)

.
jj

in
di

ca
te

s
m

ag
ni

tu
de

(th
e

co
un

t
of

th
e

siz
e

of
th

e
se

t),
fg

in
di

ca
te

s
a

se
t

fu
lfi

llin
g

so
m

e
co

nd
iti

on
.

‘j’
is

th
e

co
nd

iti
on

in
g

ba
r

an
d

>
is

th
e

in
te

rse
cti

on
sy

m
bo

l.
e ij
¼
k{

(S
jI
¼

I i)
>

(S
jI
¼

I j)
}k

is
re

ad
as

‘Th
e

nu
m

be
ro

fs
pa

tia
lp

at
ch

es
oc

cu
pi

ed
(a

ta
ny

tim
e)

by
in

di
vid

ua
li

th
at

we
re

als
o

oc
cu

pi
ed

(a
ta

ny
tim

e)
by

in
di

vid
ua

lj
’.

ne
tw

or
k

ty
pe

(I,
S,

T)
no

ta
tio

n
tr

aj
ec

to
ry

m
ar

gi
na

le
m

pl
oy

ed
no

de
s

ed
ge

de
fin

iti
on

s
in

a
w

ei
gh

te
d

ne
tw

or
k

ho
m

e
ra

ng
e

ov
er

lap

ne
tw

or
k

(I,
S)

ag
gr

eg
at

ed

ov
er

tim
e

T

X k
¼
fS
jI¼

I kg
.S

et
of

po
sit

ion
s

in
sp

ac
e

us
ed

by
in

di
vid

ua
lI

k,
in

te
gr

at
ed

ov
er

tim
e

T

in
di

vid
ua

ls
(I)

e ij
/
jjf

(S
jI¼

I i)
>

(S
jI¼

I j)
gj
jE

dg
es

oc
cu

ri
n

pr
op

or
tio

n
to

th
e

nu
m

be
ro

fp
at

ch
es

us
ed

by

in
di

vid
ua

li
th

at
ar

e
als

o
us

ed
by

in
di

vid
ua

lj

pa
tch

co
nn

ec
tiv

ity

ne
tw

or
k

(I,
S)

ag
gr

eg
at

ed

ov
er

tim
e

T

X k
¼
fIj

S
¼

S k
g.

Se
to

fi
nd

ivi
du

al
th

at
oc

cu
pi

ed

pa
tch

S k
,i

nt
eg

rat
ed

ov
er

tim
e

T

po
in

ts
in

sp
ac

e

(S
)

e ij
/
jjf

(IjS
¼

S j)
>

(IjS
¼

S j)
gj
jE

dg
es

oc
cu

ri
n

pr
op

or
tio

n
to

th
e

nu
m

be
ro

fi
nd

ivi
du

als
vis

iti
ng

sit
e

it
ha

ta
lso

vis
it

sit
e

j

in
di

vid
ua

l

as
so

cia
tio

n

ne
tw

or
k

(I,
S
�

T)
X k
¼
f(

S
�

T)
jI¼

I kg
.S

et
of

ag
gr

eg
at

ion
s

w
ith

I k
as

a
m

em
be

r

in
di

vid
ua

ls
(I)

e ij
/
jjf

((S
�

T)
jI¼

I i)
>

((S
�

T)
jI¼

I j)
gj
jE

dg
es

oc
cu

ri
n

pr
op

or
tio

n
to

th
e

nu
m

be
ro

f

ag
gr

eg
at

ion
s

th
at

in
clu

de
in

di
vid

ua
li

th
at

als
o

in
clu

de
in

di
vid

ua
lj

ag
gr

eg
at

ion

sta
bi

lit
y

ne
tw

or
k

(I,
S
�

T)
X k
¼
fIj

(S
�

T)
¼

(S
�

T)
kg

.S
et

of
in

di
vid

ua
ls

pr
es

en
ti

n
ag

gr
eg

at
ion

(S
�

T)
k

ag
gr

eg
at

ion
s

(S
�

T)

e ij
/
jjf

Ij
S
�

T
ð

Þ¼
S
�

T
ð

Þ i
�

�
>
ðIj

S
�

T
ð

Þ¼
S
�

T
ð

Þ jÞ
gj
jE

dg
es

oc
cu

ri
n

pr
op

or
tio

n
to

th
e

nu
m

be
ro

fi
nd

ivi
du

als
in

ag
gr

eg
at

ion
it

ha
ta

re
als

o
pr

es
en

ti
n

ag
gr

eg
at

ion
j

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180670

4

 on November 9, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
4. Relating the tripartite model to commonly
used ecological contact networks

Edges in contact networks represent intersections in animal

movement trajectories. Consider the movement trajectories of

two individuals, I1 and I2, denoted X1 ¼ fS, T j I ¼ I1g and

X2 ¼ fS, T j I ¼ I2g. We read X1 and X2 as ‘the set of points in

space and time occupied by individual 1’, and ‘the set of

points in space and time occupied by individual 2’, respect-

ively. The intersection of those trajectories, X1

T
X2, contains

all points in space and time where I1 and I2 co-occur—their

complete set of direct contacts. The size of the intersection

is proportional to the edge-weight linking that pair of

individuals in an individual association network. Because X1

and X2 are conditioned on specific individuals, the network

produced by X1 and X2 retains individual-specific informa-

tion, and individuals form the network’s nodes. Specific

information about the space and time of contacts are not

retained, however; contact events are simply summed up in

the trajectories’ intersection (figure 2f ). Directly connecting

individuals in proportion to their co-occurrence in space

and time equates to ‘projecting’ the tripartite network

down to a unipartite network only containing nodes of

type I (e.g. [10]).

Restructuring the conditional term within the movement

trajectories changes the network projection. For example, if

Y1 ¼ fI j S ¼ S1g and Y2 ¼ fI j S ¼ S2g, then the intersection

Y1

T
Y2 is the set of individuals who visited both S1 and

S2. A network based on this conditioning retains information

about specific spatial patches, which form its nodes. Edges

are weighted by the number of individuals who visited

both patches, but information about the specific individuals

involved is lost.

Table 1 describes the projections underlying common eco-

logical networks. The tripartite model has two reasonable

bipartite projections (figure 2b,c), and four unipartite projec-

tions (figure 2d–g), most of which are at least occasionally

used in ecological studies of contact.

One bipartite projection is an (I, S) projection (figure 2b)

which aggregates over time and measures individual inter-

actions in terms of shared space. This individual-space

projection can produce two unipartite reductions. Patch

connectivity networks connect sites (S) on the basis of

shared individuals (I; figure 2d ). Home range overlap net-

works connect individuals (I ) that visit the same sites

(S; figure 2e).

The other bipartite projection is an (I, S � T) projection

(figure 2c), in which individuals interact with one another

through presence in the same ‘aggregation’ (which is to say,

being in the same place at the same time). Crossing space

and time removes information on precisely when and where

an aggregation occurred, but differentiates aggregations from

one another in space–time. These networks are often generated

by researchers surveying a population at fixed intervals in

time, and recording group membership for each identifiable

individual during each survey. The individual-aggregation

bipartite structure can be reduced to two unipartite networks.

An individual association network connects individuals in pro-

portion to their occurrence in the same aggregations (figure 2f ).

A network of communities takes the opposite reduction, and

connects aggregations (S � T ) in proportion to their shared

individuals (figure 2g).

http://rspb.royalsocietypublishing.org/
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5. The tripartite model links animal behaviours
to network projections

Condensing the full (I, S, T) tripartite network to a simpler

unipartite or bipartite projection always reduces the net-

work’s information content, but the amount of information

lost depends on redundancy between the I, S, and T variables

[10,11]. One way to quantify information loss is through the

pairwise mutual information between I, S, and T [12]. If

mutual information between two variables is high, most of

the information from one variable is replicated in the other.

For example, sometimes knowing an individual’s location

provides information about its identity, and vice versa.

When mutual information between variables is high, lower-

dimensional networks may retain most of the information

in the complete tripartite network.

Behaviour can structure the mutual information among

the I, S, and T variables. For some species, good conditions

may draw certain individuals together at particular points

in space and time in fusion events (figure 3a; [13]), and

drive groups to fracture when conditions decline. Species

like bighorn sheep [14] or onagers [15] that exhibit this
fission–fusion dynamic may have low mutual information

between I, S, and T, allowing the full tripartite network to

capture aspects of contact overlooked in lower-dimensional

projections (figure 3a).

Social preferences generate correlations between indi-

vidual identity and aggregation membership for species

like elephants [16] that live in stable social groups which

overlap in space (figure 3b). In these societies, two individ-

uals either consistently co-occur in space and time if they

are in the same social group, or rarely co-occur if they are

in different groups. In this situation, information is shared

between individuals, so that knowing one group member’s

location at a particular point in time provides strong insights

about the contemporaneous location of its group members.

High mutual information between individuals means that

spatio-temporally explicit contact patterns can be captured

with an (I, S � T) network.

Species that undergo population-wide seasonal migrations

are likely to exhibit information sharing between space and

time. For these species, spatio-temporally explicit contact pat-

terns could potentially be described in a bipartite network of

(I, S) or (I, T), but including both S and T may be unnecessary.

http://rspb.royalsocietypublishing.org/
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For territorial species like damselflies [17] or wolves [18],

individuals (or social groups) roughly partition space, gener-

ating high mutual information between S and I (figure 3d ). In

these societies, spatio-temporally explicit contact patterns can

sometimes be captured through patch connectivity networks

with spatial nodes, or individual association networks (see

electronic supplementary material).

Lower-dimensional networks that exclude I, S, or T will

always contain less information than the tripartite network.
Researchers designing network studies are aware of, and

often adjust for, perceived relationships to minimize infor-

mation loss when designing network data collection, but in

our experience, this integration is often ad hoc. Mutual infor-

mation may offer researchers one route for quantitatively

grounding those decisions.

In principle, the set of possible tripartite networks can

be quite large, but it is often dramatically reduced if mar-

ginal distributions are known [19]. One strength of the

tripartite model is that it has many well-studied and ecolo-

gically relevant margins. For instance, a distribution of

patch occupancy frequencies captures the total number of

time steps each patch was occupied; and a distribution of

individual-level home range sizes captures the distribution

of the number of unique patches each individual occupied.

These and other behavioural or space-use metrics describ-

ing specific marginal distributions of the (I, S, and T ) array

can inform the set of possible edge configurations within

the tripartite network. In practice, integrating these mar-

ginal distributions into network structures would allow

researchers to draw inferences about network metrics like

modularity or degree, even in the absence of movement

trajectory data on a large number of individuals.
6. Simulating tripartite networks subject to
marginal constraints

Marginal constraints have been used to build ‘null’ networks

to test a variety of hypotheses about ecological networks, includ-

ing biogeographic dynamics [20,21], species co-occurrence

[22], and more recently, social structures (e.g. [23] and reviewed

in [24]). In these studies, researchers typically simulate a

random set of null networks constrained to have particular

marginal distribution(s). A test statistic of interest is recorded

for each simulated network. The set of test statistics gener-

ated under the null is then used as a reference distribution

against which researchers compare an empirically realized

test statistic value.

Here, we focus on the reference distribution itself. Multi-

partite network simulation hinges on drawing stubs (one-

sided edges) for particular node types, and then randomly

connecting stubs across node types [9,25]. For example,

with a known aggregation size distribution, we might assign

each individual I node one stub for each time step it was

observed (an individual observed four times would get

four stubs). The same total number of stubs would then be

distributed across aggregation nodes, with each aggregation

getting stubs equal to its observed size (an aggregation of

size seven would get seven stubs). Then, we would ran-

domly connect individual and aggregation stubs to build a

bipartite individual-aggregation network, subject to individ-

ual observation frequency and aggregation size constraints.

This network could then be projected down to an individual
association network, and that projection could serve as a

basis for calculating metrics of interest.

At the tripartite structure, simulations of the true-but-

unobserved tripartite network can be constrained through

summary data sources entering the simulation in two ways.

First, the total number of stubs on each I, S, or T node

can be drawn from an unconditional distribution of occur-

rence (for example, distributions of the number of times

individuals were observed or the number of animal-days

patches were occupied). Second, connections between nodes

of different types can be specified through conditional distri-

butions describing population features like aggregation sizes

(how many individuals co-occur at a particular point in

space and time, jjfI j (S � T )gjj), individual habitat utilization

patterns (how often an individual visits each patch, jjfS ¼ Sj
I ¼ Igjj), and patch occupancy patterns (how frequently a

patch is occupied, jjfT j S ¼ Sgjj). The tripartite network is

built by connecting stubs from different node types randomly,

but in accordance with these conditional distributions.

Finally, we can project the tripartite network down to the

desired lower-dimensional representation, and record network

metrics calculated on that projection. Repeating this process

many times produces a set of random contact networks

subject to the specified constraints. Simulation utility is illus-

trated with two examples below. R code and full simulation

protocols for both simulations are included with the electronic

supplementary material.
(a) Example 1: generating a set of individual
association network modularities from individual
home range size and patch occupancy data

In the first scenario, we imagined a researcher who is interested

in modelling contact, but only has data on home range sizes

and patch occupancy patterns. Our goal was to generate a

distribution of plausible modularities from the individual

association network, subject to constraints from the research-

er’s data, but in the absence of radiotelemetry data

documenting particular individual movement trajectories.

We conducted this simulation under two different ecological

contexts: first, a system in which space use was highly overdis-

persed, so that most patches were used very rarely, while a few

were used with extremely high frequency; and second, a

system in which space use was underdispersed, and all patches

were used with similar frequency.

To run the simulation, we built mock datasets describing

home range sizes and patch occupancy patterns in each scenario.

We let the population consist of 50 individuals distributed across

30 habitat patches, and we let the process run for 40 time steps.

We randomly sampled a home range size for each individual

and a quality score for each patch from distributions defined

by the scenario’s ecological context (see electronic supple-

mentary material for additional details). We simulated 1 000

tripartite (I, S, and T ) networks subject to the home range size

and patch occupancy constraints, and projected each tripartite

network down to its individual association network projection.

We then calculated and stored modularity values describing

the proportion of within- versus between-group connections

in the network generated from each simulation.

We contrasted modularity values from the individual

association networks built subject to constraints with modular-

ity values produced under a null model in which individuals

http://rspb.royalsocietypublishing.org/
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moved completely at random. Modularities under the null

model and both constrained scenarios are shown in

figure 4. Including marginal constraints altered the relative

frequencies of the modularity values. Networks constrained

by overdispersed space use tended to have lower modulari-

ties than networks generated in the absence of information,

whereas the opposite was true for networks constrained to

have consistent space use. In both scenarios, simulated mod-

ularities with appropriate constraints could provide the

researcher an a priori expectation about mixing dynamics

within the system, even without direct collection of network

data. A complete description of the simulation protocol is

provided in the electronic supplementary material.
(b) Example 2: exploring the relationship between
group size, home range size, and modularity in
individual associations

In the second scenario, we imagined a researcher seeking a

more general description of how a set of ecological and network

metrics correspond to changes in aggregation size distribution,

in environments with heterogeneous habitat quality.

First, we built a series of 1 000 datasets describing

aggregation size. For each dataset, we simulated a realized

aggregation size distribution according to a Gamma (Shape,

Scale) distribution. The shape parameter of the Gamma distri-

bution ranged systematically from 0.5 to 50 on the log-scale,

and the scale parameter ranged systematically from 2 to 10.
We considered 10 increments for each parameter, giving us

100 unique distributional forms for aggregation size. We incor-

porated heterogeneity in patch quality by requiring patches

to be occupied in a specific order (so that in time steps with

five aggregations, the five top-ranked patches were occupied,

but when only three aggregations were present, the 4th- and

5th-ranked patches were left empty).

We simulated 10 replicate tripartite networks under

each parameter combination (see electronic supplementary

material for complete protocol), and projected the tripartite

networks down to their individual association network projec-

tions, where we calculated modularity. We also constructed

emergent marginal distributions of the tripartite network cor-

responding to aggregation size and patch occupancy and

recorded mean values for each. We examined simulated

relationships between modularity in the individual association

network, individual home range sizes, and aggregation sizes

in the simulated networks.

Simulation output (figure 5) revealed systematic relation-

ships among all three metrics. As groups became larger,

modularity values of the individual association networks

declined, because large groups by their very nature connect

many individuals (figure 5a). Modularity increased with

increasing home range size, presumably because larger home

ranges increased the opportunity for many pairs of individuals

to overlap in space (figure 5b). Group sizes were large

when home range sizes were small in the presence of hetero-

geneous habitat, likely because animals all congregated at the

highest-quality patches (figure 5c).
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7. Discussion, limitations, and conclusion
Accurately describing animal contact patterns is essential for

modelling transmission of diseases, genes, and signals. Here,

we propose a tripartite network model that relates network con-

struction methods to one another and integrates contact data

with other commonly collected ecological metrics. Our approach

offers a way to incorporate a variety of summary data sources

into contact network construction to validate and strengthen

inferences about patterns of contact and transmission.

Many authors have considered more than one variable of

the tripartite model in contact analyses (e.g. [26–33]), and

some have made headway toward considering all three

(e.g. [34–36]). Our approach rests on the foundation of this

work, but at least four major limitations remain: the tripartite

model requires discretization of space and time; it assumes

that contacts described in the network accurately approxi-

mate contacts required for transmission; and it overlooks

observation errors associated with the data. Lastly, simu-

lation under the tripartite model remains a challenge. We

briefly address each of these below.
(a) Limitation 1: discretizing space and time produces
information loss

The tripartite model requires discretizing space and time.

Discretization at any scale results in information loss from the

continuous movement process, with the amount of information

lost depending on the scale of autocorrelation across space and

time. Autocorrelation is driven in turn by the spatio-temporal

movement dynamics of the system [37]. When measurements

are rapid relative to movement rates (i.e. animals rarely move

between discrete spatial patches in consecutive observations),

coarsening the scale may result in minimal information loss.

However, if animals regularly move across multiple patches

between consecutive observations, information loss could be

high. Matching discretization to the spatial and temporal

scales of movement is probably the most efficient way to cap-

ture contact patterns. Networks built on discretization at
appropriate resolutions should retain most of the information

of the continuous movement process, but this issue merits

further exploration.

(b) Limitation 2: transmission dynamics also depend on
order of occupancy, and on characteristics of the
transmitted entity

Host contact patterns are crucial for understanding trans-

mission dynamics, but they may not provide accurate

predictions of transmission unless they also account for certain

features of the pathogen, gene, or signal being transmitted.

Often, hosts only release transmissible entities like seeds,

pathogens, or signals into the environment during certain

times, for example, during infectious periods, signalling

periods, or periods of oestrus. The duration of the transmission

period couples with the host’s movement rate to determine

when and where an animal transmits. Some transmission

events are well-approximated by host movements, but in

other situations, signals, seeds, and pathogens can persist

and move long distances outside the host. These independent

movements extend the region of transmission beyond the

host’s movement trajectory (e.g. [35,38]). How these indepen-

dent movements alter the contact structure relevant for

transmission is a topic of on-going investigation [39–42].

When the transmissible element can persist and move

outside the host, the temporal order of animal space use

becomes important. If two animals visit a patch in sequence,

transmission can only occur from the first to the second visi-

tor, not from the second to the first. Incorporating persistence

and movement of transmissible elements outside the host

requires us to acknowledge autocorrelations within the sets

of space and time nodes. Here, we treated nodes in space

and nodes in time as completely independent of one another,

and relaxing this assumption to allow for spatial and tem-

poral autocorrelation is a key next step. Other authors have

begun to deal with autocorrelation in spatial networks [35],

and additional efforts in this area would improve models of

spatio-temporal transmission patterns.
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(c) Limitation 3: estimated metrics are subject to
observation error

Here, we focused on deterministic relationships between

different metrics generated from individual movement tra-

jectories, without considering error in the data collection

processes: our simulations explore constraints that summary

data sources could place on network metrics in the presence

of perfect information. These constraints are fully determined

if the individual movement trajectory is known. In the pres-

ence of noise, however, their capacity to reduce uncertainty

in underlying parameters would be reduced. Understand-

ing that reduction will be important, for both measuring

mutual information from field data, and applying marginal

constraints to network simulations. One advantage of incor-

porating ecological summary datasets, however, is that

they bring more information into the model, which should

eventually limit the consequences of observation error.

(d) Limitation 4: not all networks are easily simulated
The simulation protocols explored here are intended to serve

as toy examples that demonstrate the utility of the tripartite

network structure for incorporating ecological constraints.

They are by no means exhaustive, and we caution that

additional work is needed to develop rigorous simulation

protocols that behave appropriately across a wide variety of

marginal distributions.
8. Conclusion
An integrated approach to contact and movement is crucial for

advancing behavioural, movement, and disease ecology. The

tripartite network model proposed here offers a preliminary

integration of these fields. In its current form, the model has
two clear utilities. First, the model makes explicit the role that

associations between node types can play in shaping infor-

mation lost through network projection. We suggest that

measuring mutual information between the different node

types (I, S, and T ) could provide a quantitative basis for choos-

ing which network projection should underlie simulation

studies of transmission. Second, we showed how the model

can incorporate ecological summary datasets to generate a
priori expectations about contact dynamics in the absence of

conventional data. Both of these utilities could be directly

applied to network analyses of empirical data.

Additionally, we see this model as a scaffold for character-

izing how animal behaviours map to correlation structures

between individual identity, space, and time; and how these

in turn relate to the information contained in different network

projections. At the very least, the model provides a conceptual

organization for researchers working at the movement–con-

tact interface. We hope this exploration motivates more

discussion of how to formalize that interface for the benefit

of movement, behavioural, and disease ecology going forward.
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